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Abstract

Providing immediate liquidity against assets that settle with delay is a one-sided market-making
problem with asymmetric information, inventory risk, and operational constraints. We formalize a
model for a liquidity provider (LP) that offers instant redemptions for Hyperliquid Provider (HLP)
vault receipts that otherwise redeem after T=4.5 days via Devine OS. The objective is to maximize
expected profit while tightly controlling downside risk (targeting < 1% drawdowns) and remaining
market-neutral apart from temporary inventory. Using auction theory and market microstructure,
we derive the economically consistent instant quote (time value + risk premium + adverse-selection
discount), and we embed it in a dynamic, inventory-aware policy with strict on-chain settlement and
solvency invariants.

Context

The HLP vault is the principal counterparty to exchange flow on Hyperliquid: it accrues fees but absorbs
trader P&L. Users deposit USDC into HLP to earn this fee-driven yield, while withdrawals settle on a
delay (approximately T∈[4, 4.5] days). This delay creates a liquidity timing gap: holders who value
immediacy must either wait for primary settlement or sell their receipt claims at a discount.

Devine OS introduces an LP pool that bridges this gap by purchasing users’ HLP receipts for cash now
(instant redemption) and initiating primary withdrawal to collect the terminal payout later. Pricing must
internalize: (i) time value over T , (ii) risk of vault value changes driven by market moves and trader P&L,
and (iii) adverse selection from informed sellers who redeem when they expect PT to be low. Because no
direct short on HLP exists, the LP cannot perfectly hedge receipts; it must manage exposure through
conservative pricing, inventory caps, and where feasible partial hedges against systematic risk.

This paper formalizes that policy. We (a) derive the instant quote as the conditional expectation of
terminal value minus explicit premia, (b) add inventory-sensitive adjustments and halt regions for safety,
and (c) specify settlement, accounting, and security invariants so realized P&L matches the model.

What Devine OS Does (in this flow)

• Primary Vault Router (on-chain): ERC-4626–style router wired to HLP. It starts and finalizes
delayed redemptions, tracks user and batch nonces, enforces NAV freshness and drift bounds, and
prevents replays with per-batch key / tx-hash checks.
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• Instant Liquidity Pool (off/on-chain): A one-sided market maker that quotes an immediate exit
price based on time-to-settlement, volatility/risk, signs of informed flow, and current inventory. It can
widen spreads or pause under incident or venue-health signals.

• Settlement Orchestrator (off-chain): Batches withdrawals; verifies exchange wallet and on-chain
vault balances; posts on-chain batch funding; and executes per-user confirmations individually with
replay protection, NAV freshness/drift checks, batch-liquidity caps, and expiry windows. Merkle claims
are optional and not used in the current build. Idempotent by design.

• Risk/Oracle Layer: Streams NAV snapshots and venue/bridge health, maintains estimates of ex-
pected terminal value, volatility, informed-flow intensity, and utilization, and triggers halts when data
are stale or incidents occur.

• Policy/Limits: Enforces inventory caps aligned to a target drawdown, drift/PnL tolerances, settlement-
lock windows, and single-use batch keys / tx-hash uniqueness to block replays or double allocation.

• Optional Pass-Through Lane (simple): We advance part of the user’s redemption today and sell
the right to the final payout at unlock. The buyer of that right takes the market-price risk; we earn a
transparent fee. Two modes:

– Consumer / non-recourse: Conservative advance, protected by pool backstops. If the final pro-
ceeds are lower, the shortfall is the buyer’s risk (not clawed back from the user).

– Professional / recourse: The buyer posts margin and is responsible for any shortfall. This keeps
price risk off the maker while enabling higher advance ratios.

In both cases, our role is to deliver cash now and pass the market-price risk through to the buyer, not
keep it on the pool.

Together, these components allow Devine OS to (i) quote economically sound instant liquidity, (ii)
settle deterministically on-chain, and (iii) bound tail risk via inventory-aware pricing, halts, and strict
invariants. Subsequent sections formalize the quote, the inventory control law, the pass-through lane,
and the production invariants and TCA used to calibrate and monitor the system.

Paper Structure

We proceed as follows: In Section 1, we define the model, including the asset payoff structure, the
sequence of events (trades and redemption), and the types of traders (liquidity-motivated vs. informed).
Section 3 derives the optimal quoting strategy for the LP under a Bayesian framework, showing how the
instant redemption price is set based on the expected future value and the probability of adverse selection.
We link this to classic results where a market maker’s bid equals the expected value conditional on a
sell order. The analysis shows how a “discount” (bid-ask spread) emerges as a function of information
asymmetry and risk.

Section 4 incorporates inventory and risk management: we formalize how the LP updates quotes after
each trade, manages inventory of HLP tokens to remain near market-neutral, and imposes risk limits
to achieve minimal drawdown. We adapt ideas from stochastic optimal control in market-making to
our setting with periodic settlement. Section 5 discusses hedging and arbitrage considerations: what
if the LP can hedge part of the exposure via correlated markets or run secondary arbitrage strategies?
We also consider if the LP can offload inventory to other participants or needs to internalize all risk.
Section 6 outlines practical implementation details and Transaction Cost Analysis (TCA) for evaluating
the strategy’s performance. Finally, Section 7 concludes with a summary and potential extensions (e.g.,
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multi-asset pools, dynamic settlement periods, or integration with AMM mechanisms).

Throughout, our aim is to present a comprehensive, formal treatment akin to an academic whitepaper.
We use mathematical notation to specify the LP’s optimization problem and cite relevant literature to
connect our approach with known optimal market making frameworks.

1 Model Setup and Assumptions

1.1 Asset and Payoff

The asset in question is a claim on the HLP vault (an HLP receipt token) that can be redeemed with a
4.5-day delay for its proportional share of the vault’s underlying assets. We denote by P0 the current net
asset value (NAV) per HLP token (i.e., what one token would redeem for if one waited the full period).
The future redemption value after 4.5 days is a random variable PT (with T = 4.5 days).

The uncertainty in PT comes from two main sources:

1. Market movements and trader PnL: The HLP vault’s value can change as underlying asset prices
move and as traders on the exchange win or lose against the vault. For example, if many traders are
long and the market rallies, the vault pays out profits and PT drops; if traders lose, PT rises.

2. Fees and yield accrual: The vault earns trading fees which add to its value over time, providing
an expected drift upward.

For modeling, we treat
PT = P0 +∆, (1)

where ∆ is a stochastic change over 4.5 days with E[∆] ≥ 0 (fees yield a small positive expected return)
but with significant variance due to trader PnL and market moves. Extreme events (e.g., a “toxic flow”
incident) can cause large negative ∆; indeed, incidents have caused multi-million dollar losses to HLP.
We assume PT ’s distribution (prior) is known to the LP or can be estimated from historical data and
current market conditions.

1.2 Actors

There are two types of traders who may come to the LP requesting instant redemption (i.e., selling HLP
tokens to the LP):

Uninformed (Liquidity) Traders: These users trade for idiosyncratic or liquidity reasons for ex-
ample, needing immediate cash or rebalancing portfolios. They do not have private information about
PT . Their decision to redeem now versus wait is mainly based on personal preference or urgency. We
model that an uninformed trader will accept the LP’s instant redemption price if the discount (i.e., how
much less they get now compared to the expected future value) is within their tolerance. In aggregate,
the arrival of uninformed redemption requests can be treated as a random flow (e.g., Poisson process)
independent of PT . The LP earns profit from uninformed trades on average, by buying below the true
expected value.

Informed Traders: These are users who may have private information or forecasts about the HLP
vault’s future value. For example, an informed trader might know about a large impending loss in the
vault (perhaps they are aware of a risky position or a market event that will hurt HLP) such a trader
has an incentive to redeem early through the LP to avoid the loss. Conversely, if a user knew PT will
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increase (e.g., they expect traders in the vault to incur losses, benefiting the vault), they would prefer to
wait and redeem later at a higher value rather than sell to the LP now.

In our model, informed traders selectively interact: they will sell to the LP only if their information
predicts PT will be sufficiently below the LP’s quoted price. In other words, any informed trader who
chooses to use instant liquidity is likely doing so because they anticipate a drop in vault value (adverse
selection against the LP). We let α denote the fraction of incoming traders who are informed (or the
probability a given request is informed). Even a small α can significantly affect optimal pricing due to
their selective behavior.

1.3 Liquidity Provider (LP)

Our liquidity provider is modeled as a monopolist market maker for instant redemptions (we assume no
competition such that the LP can set prices optimally for profit, constrained only by users’ willingness
to trade). The LP has an initial capital pool used to pay users who redeem instantly, and this pool is
replenished when the LP receives the delayed payouts from the HLP vault. The LP’s inventory is the
number of HLP tokens currently held (which have been bought from users and are awaiting redemption).
We denote the LP’s inventory at time t as q(t) (positive q means the LP is long HLP tokens, i.e., has
paid out cash and is waiting for future payouts; a negative q would mean the LP somehow short HLP,
but in our case q ≥ 0 since the LP primarily buys tokens).

The LP’s objective is to maximize expected profit from these trades while controlling risk. Profit comes
from the difference between what the LP receives at redemption (PT per token) and what it paid users
up front (Q per token), times the quantity. However, if the vault’s value drops significantly or if many
informed traders offload before a bad event, the LP could face losses (paying Q > realized PT ). The
LP is risk-averse to large drawdowns, so in the model we include risk management constraints (e.g., the
LP targets a high probability that losses do not exceed 1% of capital, as mentioned). We will formalize
these through either a risk penalty in the objective or explicit constraints on inventory and pricing.

1.4 Timeline and Decision Sequence

We consider a continuous-time or multi-period model over the 4.5-day horizon. For analytical tractability,
it’s useful to break it into discrete events:

• At t = 0, the current HLP NAV is P0. The LP sets an instant redemption price quote Q0 (per
token) that it is willing to pay to anyone redeeming immediately at that time. This quote may be a
function of P0, the LP’s current inventory, time remaining, etc. (We will often consider an equilibrium
or steady-state where P0 is roughly constant except for realized changes, so Q is typically somewhat
below P0).

• Traders decide whether to accept the quote. If a trader comes forward, one of two things happens:

(a) If the trader is uninformed, they will redeem if the quote Q0 is attractive relative to their needs
(for modeling, we may assume all uninformed traders in need just trade, since any discount is the
“service fee” they pay for liquidity).

(b) If the trader is informed with signal about PT , they will redeem only if their expected PT (given
their info) is less than Q0 ensuring they benefit by selling at Q0 and avoiding a lower outcome.
If their info suggests PT will be higher than Q0, they will not trade (they prefer to wait or might
even want to buy if such were offered, but this white paper focus is one-sided).
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• After each trade, the LP’s inventory q changes (increases by the number of tokens bought). The LP
immediately initiates a primary redemption from the HLP vault for the tokens acquired (to start the
4.5-day clock for payout). We assume redemptions initiated at time t will pay the holder PT at t+ T

(with T = 4.5 days). In practice, multiple redemptions can be batched, and the vault has a pooled
MPC (multi-party computation) wallet and smart contract handling these flows (as per the system
design given). The settlement being T + 4.5 means effectively the LP will receive the funds later.

• The LP updates its beliefs and prices after observing any trade (or lack of trade). The presence of a
trade, and especially its size, may carry information. No trade in a period could also carry information
(in classical models, if the quote is too low, informed traders might not trade, indicating perhaps
nothing is wrong). The LP can use Bayesian updating: conditioning on a sell order arriving tends
to indicate a lower expected PT (adverse selection), so the LP should adjust its estimate of the true
value downward. Many market making models incorporate such belief updates. However, in our
context, the LP may not need to explicitly update PT ’s distribution if we assume it already prices
conservatively; still, formally, after a redemption trade, the LP could revise its mean estimate of PT

given that someone was willing to sell now. We will denote the LP’s belief about the expected value
of a token as µ; initially µ = E[PT ] under the prior, but after observing trades or other signals, µ is
updated.

• The LP then sets a new quote Q for the next incoming request (this could be dynamic in continuous
time or period-by-period). This process repeats for each arriving redemption request up until time T .
At t = T (4.5 days later), all pending redemptions initiated earlier are settled: the LP receives the
actual payouts for tokens it is holding. At this point, the LP’s profit/loss on each batch is realized as
PT −Qpaid (times quantity). The LP’s total profit is sum over all trades minus any hedging costs.

1.5 Pricing Decision Formalization

The core decision of the LP is setting the instant redemption price Q(t) at each moment (or for each
trade). We can model Q as a function or strategy Q = f(information available) where information
includes current time, inventory, prior/posterior beliefs about PT , etc. Because the LP is essentially
bidding for the asset (HLP token), we will sometimes refer to Q as the bid price from the perspective
of the LP (since LP buys at Q). There may not be an “ask price” because the LP might not normally
sell HLP tokens to users (users who want to enter the HLP vault can deposit directly with the primary
vault rather than buying from the LP). However, if needed, one could imagine the LP also offering an
ask (selling HLP tokens at some price > P0) to offload inventory if there are willing buyers this could
be another mechanism to manage inventory. In the simplest case, we treat it as one-sided quoting: LP
posts a bid for immediate redemption, and users either hit the bid or not.

The LP’s profit from a single trade of size 1 token (for simplicity) at time 0 is:

Π = PT −Q0. (2)

PT is uncertain at time of trade, so the expected profit given the LP’s information (and conditional on a
trade occurring) is E[PT | trade]−Q0. The LP will choose Q0 to maximize this expected profit, taking
into account how Q0 influences the probability of a trade and the conditional expectation E[PT |trade].
We will derive Q∗ (optimal quote) by solving this optimization under different information scenarios.

5



1.6 Trader Behavior Model

We formalize the probability of trade as a function of Q. Let V represent the true (random) final value
PT of a token. We assume for analytical clarity a binary or simplified outcome space for V in some parts
of the analysis (this is a common approach in microstructure models like Glosten-Milgrom): suppose V

can be either “High” or “Low”. For example, V = VH (with probability p) or V = VL (with probability
1− p), where VH > VL. Uninformed traders do not know which state will occur; informed traders know
which state will occur (or at least have a very strong signal about it). The prior expected value is

E[V ] = pVH + (1− p)VL. (3)

Without loss of generality, one can think of VH as the case where the HLP vault performs well (no major
losses, maybe gains from traders) and VL as a case where the vault performs poorly (traders win or
market downturn). The LP and uninformed traders initially share this prior p.

Now consider a sell order arriving. In classic market-making theory, a risk-neutral competitive market
maker would set the bid price equal to the expected value conditional on someone wanting to sell.
Intuitively, if a sale is happening, it tilts the odds that the true value is lower (because an informed
trader would only sell in the low-value scenario). Formally: let θ ∈ {inf,unin} indicate trader type.
Suppose:

• With probability α, the trader is informed, and with probability 1− α they are uninformed.

• An informed trader sells if and only if V = VL (they know it’s the low state; if it were VH , they would
not sell because they’d get more by waiting).

• An uninformed trader may sell for other reasons, independent of V . For simplicity, assume an unin-
formed trader’s decision to sell is not affected by V (they might flip a coin or have liquidity needs; in
expectation, they sell with some fixed probability regardless of state). In a one-time trade setting, we
can say an uninformed trader sells with probability η (and does so without knowledge of V ).

If we simulate “one trader arrives” as either informed or uninformed:

• If informed (prob α): if VL occurs, they sell (we can take this probability as 1 for VL case); if VH occurs,
they do nothing (they would not use the service because they expect a higher payout by waiting).

• If uninformed (prob 1 − α): they sell with probability η regardless of V . Often, we consider η = 0.5

in symmetric models (uninformed equally likely to sell or not, or sell vs buy), but since here the
only action is selling (redeeming), we can incorporate η into the arrival rate of uninformed sellers.
Essentially, among uninformed traders who need liquidity, a certain portion will be redeeming at any
given time.

Given this behavior, we can derive the conditional probabilities:

• Probability of a sell order (any) occurring is:

Pr(sell) = αPr(V = VL) · 1 + αPr(V = VH) · 0 + (1− α)η[Pr(V = VH) + Pr(V = VL)]. (4)

If we assume at most one trade attempt in the period, this simplifies to

Pr(sell) = α(1− p) + (1− α)η. (5)
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(Here p = Pr(VH).)

• Conditional on seeing a sell, the probability it was an informed trader in low state is:

Pr(θ = inf, V = VL | sell) =
α(1− p)

Pr(sell)
. (6)

• Conditional probability of the low-value state given a sell is higher than the prior (1 − p) because of
this selection. Specifically:

Pr(V = VL | sell) =
α(1− p) + (1− α)η(1− p)

Pr(sell)
. (7)

If η is not too large, this is > (1− p). In the limit where uninformed always trade (η large or effectively
= 1 for one trade scenario), we get

Pr(VL|sell) =
α(1− p) + (1− α)(1− p)

α(1− p) + (1− α)
= 1− p, (8)

meaning if almost all trades are uninformed, the conditional probability stays equal to prior (no adverse
selection). But if α is significant and η is low (meaning trades are infrequent unless informed strongly
wants to trade), the conditional probability of VL given a sell can approach 1.

For a risk-neutral LP aiming for zero expected loss (in a competitive setting), the optimal bid price Q

satisfies:
Q = E[V | sell] = VL Pr(VL | sell) + VH Pr(VH | sell). (9)

This is exactly the conditional expectation of the asset’s true value given that a sell order is observed.
In the Glosten–Milgrom model, market makers set bids and asks equal to these conditional expectations
to avoid expected loss to informed traders. The spread emerges because

E[V | sell] < E[V ] < E[V | buy] (10)

when some traders are informed. In our context, we are not necessarily assuming a perfectly competitive
zero-profit LP; rather, our LP might have some monopoly power to charge a slightly larger spread (aiming
for positive profit). However, if it sets Q too high, it will lose money to informed traders; if Q too low,
uninformed traders might not use the service (or go to competitors, if any). So the equilibrium Q will
be near this conditional expectation, possibly adjusted for risk and profit margin.

1.7 Adverse Selection Discount

We can quantify the adverse selection component of the discount (the difference between the fair expected
value and the bid Q). Using the binary example above for intuition: say prior E[V ] = pVH + (1− p)VL.
If α > 0, then E[V | sell] will be tilted toward VL. In fact, if uninformed trades are equally likely buy/sell
(in a symmetric market), the classic formula for the bid price in a one-shot trade is:

Qbid = Pr(VH | sell)VH + Pr(VL | sell)VL. (11)
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In the extreme case of η → 0 (meaning a trade is almost surely an informed one), Pr(VL|sell) → 1 and
thus Q → VL. In the other extreme α → 0 (no informed traders), Pr(VL|sell) = Pr(VL) = 1 − p, so
Q → E[V ] = pVH + (1− p)VL the LP can pay essentially the full expected value (minus perhaps a small
charge for time value/profit). For intermediate cases, one can derive:

Q =
(1− α)ηE[V ] + α(1− p)VL

(1− α)η + α(1− p)
. (12)

If η is small (traders only come when informed or very occasionally otherwise), this will be close to VL.
If η is larger (regular uninformed flow), Q moves closer to E[V ].

In summary, the optimal quote will incorporate a discount relative to the naive expected value. This
discount accounts for:

• Time Value of Money: The LP’s capital is tied up for 4.5 days. There is an opportunity cost
or interest rate r for that period. For example, if risk-free rate is rannual, for 4.5 days (≈ 0.0123

of a year), the risk-free growth is negligible but not zero. The LP might factor in a tiny discount
Q ≈ E[PT ]/(1 + r · 4.5 days). This is usually very small (basis points), so we focus on bigger factors.

• Risk Premium: Even if traders are uninformed, PT is risky. A risk-averse LP would charge a
premium for bearing this risk. If σ is the standard deviation of ∆ (change in vault value over 4.5
days), the LP might discount by some fraction of σ depending on risk appetite (akin to applying a
worse-case or Value-at-Risk buffer). We could incorporate this by Q = E[PT ]− λσ for some λ related
to a confidence level (for example, to ensure 99% of outcomes PT > Q to limit drawdown). We will
formalize risk constraints later.

• Adverse Selection (Information Asymmetry): If α > 0, the LP knows that a user willing to sell
might have bad news. The conditional expectation E[PT |sell] is lower than the unconditional E[PT ].
We denote the adverse selection discount as

δinfo = E[PT ]− E[PT |sell] ≥ 0. (13)

In the binary case earlier, δinfo = (pVH + (1 − p)VL) − (Pr(VH |sell)VH + Pr(VL|sell)VL). This can
be simplified; for instance, if VH − VL = D is the “value range”, one can show the bid-ask spread in
symmetric information case is proportional to αD. For our one-sided service, effectively the “spread” is
between the primary market (face value) and our bid. We ensure Q is low enough that E[PT |sell] ≈ Q

(if we want zero expected loss). If we want positive expected profit, we set Q a bit below E[PT |sell].
However, setting it much below will reduce volume (uninformed might balk unless desperate), so there
is an optimal point balancing volume vs. margin.

1.8 Volume vs. Price Trade-off

In a more general continuous model, we can imagine the LP sets a price schedule (demand curve) for
how many tokens it is willing to buy at what price, similar to Myerson’s mechanism design approach.
The LP could choose a schedule Q(q) giving the price as a function of total quantity q it will purchase
(or equivalently, how the price slides for larger trades). If many users want to redeem at once, the LP
might offer a lower price for the later units (to protect itself). However, if we assume trades arrive one
by one and are typically small relative to LP capital, we can treat each trade independently for pricing.
The LP’s strategy effectively creates a marginal price for the next token.
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According to optimal mechanism design for a monopolist with asymmetric info (like Myerson’s auction
theory), the profit-maximizing strategy might involve a cutoff strategy: do not trade (no quote) if the
inferred value is in some range, and trade at a certain price if lower. In our setting, that could translate
to: if the LP is very uncertain or risk of informed trading is too high, it might temporarily stop offering
liquidity (a “no-trade” region to avoid sure loss). Otherwise, it quotes a price that includes a markup.
The Myersonian result for optimal auctions implies setting a price according to “virtual value” of the
trader’s signal. Roughly, the LP would adjust the price to make the marginal informed trader indifferent
capturing some information rent as profit while ensuring incentive-compatibility (traders reveal their
need/information truthfully by the act of trading or not).

We won’t delve deeply into auction math here, but note that optimal profit-maximizing liquidity provision
leads to a bid-ask spread even for a monopolist, caused in part by adverse selection (and also by the
desire to profit as a monopolist, which is akin to “monopoly pricing” of liquidity). Our model’s results
will be consistent with these general insights: a jump or gap between the price the LP is willing to buy
and the expected fair value arises to protect against informed traders and to earn a return for providing
the service.

1.9 Equation of Optimal Bid

Combining these considerations, we can propose a formula for the LP’s instantaneous bid quote Q∗. Let
µ be the current expected value of PT (posterior mean given all info so far, prior to seeing the next
trade decision). Let σ reflect risk (e.g., one standard deviation of possible change). Let α capture info
asymmetry likelihood. One conceptual formula is:

Q∗ = µ− rfµ∆T − γσ2∆T − δinfo, (14)

where rf is the risk-free rate (time value adjustment, ∆T = 4.5/365 ≈ 0.0123 years), γ is a risk-aversion
coefficient translating variance into a risk premium (this term could be 1

2γσ
2 or another function if using

a CARA utility or VaR constraint), and δinfo is the adverse selection discount.

To be more concrete, using the binary model analysis for δinfo: if VH − VL = D, and Pr(VH |sell) = π

(lower than p), then
E[V |sell] = πVH + (1− π)VL = VL + πD. (15)

Originally µ = pVH + (1− p)VL = VL + pD. The difference is

δinfo = µ− E[V |sell] = (p− π)D. (16)

In a scenario with continuous distribution, one can show similarly that δinfo relates to the hazard rate
of informed trading essentially higher when the likelihood of a low outcome given trade is higher. For
instance, Glosten derived that the bid-ask spread equals the probability of informed trading times the
value dispersion. For our purposes, we treat δinfo as a parameter to be determined by calibrating to
how much worse outcomes are on average when someone redeems vs overall average. In practice, the LP
could estimate δinfo by looking at historical data: “When someone redeems early, what was the average
shortfall in final payout?” If, say, historically early redeemers received on average 0.5% more than the
final value (meaning the vault often dropped after early redemptions), then δinfo ≈ 0.5% · P0. The LP
would then incorporate that into quotes.
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Summary. In words, the LP’s quoting policy is: offer an instant redemption price that is somewhat
below the expected redemption value, with the markdown reflecting (i) the financing cost for 4.5 days,
(ii) a risk buffer for possible adverse vault moves, and (iii) an adverse selection buffer if informed users
are likely to redeem when bad news looms. The resulting discount ensures that in expectation, the LP
does not lose money on the trades in fact, ideally gains. This is analogous to how a market maker sets
a bid price below the expected true value to compensate for the chance that the seller knows the value
is lower.

2 Parallel Pricing Mechanism: Pass-Through Advance With True

Up (Risk to Taker)

This section adds a parallel mechanism that provides instant cash while shifting price risk over the
settlement window to the taker. It runs alongside the fixed price market making model developed in
Sections 1–4. The key difference is that the final user cash flow references the realized terminal NAV PT .
The liquidity provider does not form a directional view and does not earn or lose on PT in expectation.
The provider earns a transparent fee net of funding and operations.

2.1 Contract Terms and Timeline

A user with S HLP receipt shares requests an instant exit at time t0.

Advance now
A = S · P0 · a

where P0 is the current per share NAV and a ∈ (0, 1) is the advance ratio quoted by the protocol.

Final entitlement at unlock
F = S(PT − f)

where f ≥ 0 is a per share fee and PT is the realized per share payout at t0 + T with the same T as in
Section 1.

True up rule
TopUp = max{0, F −A}

The protocol pays TopUp from funds actually received at unlock. In a non-recourse lane no clawback is
attempted if F < A. In a recourse lane the user posts margin and any shortfall A− F is netted against
that margin.

2.2 Who Bears Risk

• Economic price risk over [t0, t0 + T ] sits with the taker because the total user cash flow equals
PT − f per share.

• Residual shortfall risk exists only for the non-recourse lane when F < A. It is removed in the
recourse lane by posted margin.

• Provider economics are fee minus funding and operations with no directional PT exposure in the
recourse lane.
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2.3 Advance Ratio as Capacity Price

The advance ratio a prices immediacy and balance sheet usage rather than a view on PT . Write

a = 1−
(
f + cf + co + b

)
− λσσ̂T − λug(u)− 1stress · s

where cf is four day funding, co is four day operations, b is a small safety buffer, σ̂T is a conservative
volatility proxy, u is utilization, g is increasing in u, and s is a stress add on. In practice a is clamped
by a shortfall floor

a ≤ 1− f − cf − co − VaRα(T )

so that Pr(F < A) ≤ α in the non-recourse lane.

2.4 Two Lanes

Retail non-recourse User receives A now and a top up later if F > A. If F < A the gap is a protocol
shortfall covered by an explicit waterfall: insurance then junior capital then a capped treasury allocation.
Capacity is gated by the backstop so offered advances never exceed cover.

Professional recourse User escrows shares and margin in USDC. At unlock the contract nets any
shortfall A−F from margin and returns the remainder. With sufficient margin the provider has no price
PnL across all paths.

2.5 Settlement and Accounting

Batched workflow mirrors Section 6. The router confirms net USDC received for the batch. An off-chain
job computes per user top ups and posts a Merkle root. Users claim with proofs. No loops are used on
chain.

2.6 Properties

Proposition 2.1. In the recourse lane with sufficient margin the provider’s expected price PnL is zero
for every path. The per share revenue equals f and the net revenue equals f − cf − co.

Proof. Per share user cash flow equals PT −f . The provider receives PT and pays PT −f . The difference
is f . Funding and operations reduce this amount deterministically.

Proposition 2.2. If a ≤ 1− f − cf − co − VaRα(T ) then in the non-recourse lane Pr(F < A) ≤ α.

Proof. By definition of VaRα(T ) we have PT ≥ P0−VaRα(T ) with probability at least 1−α. The bound
on a implies A ≤ S(P0 − VaRα(T )− f − cf − co). Hence F ≥ A with probability at least 1− α.

2.7 Comparison With Fixed Price Market Making

• The original model in Sections 3–4 sets a one sided bid Q and carries PT − Q price risk. Adverse
selection drives the discount through E[PT | sell] as in classical market microstructure theory.

• The pass through mechanism in this section fixes the terminal leg to PT . Pricing focuses on capacity,
utilization and risk limits. Information asymmetry affects capacity through a rather than expected
price PnL.
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2.8 Operational Safeguards

Advance ratio goes to zero under oracle staleness, withdrawal halts or venue incident alerts. Batches
are capped by an insurance based coverage factor. Retail and professional lanes are separated at the
contract boundary.

3 Optimal Quoting Strategy

Building on the model setup, we now formally derive the optimal quoting strategy. The LP’s problem is
to choose a bid price Q that maximizes expected profit while managing the risk of adverse selection and
market movements.

3.1 Objective Function

The LP’s expected profit from a single trade (normalized to one token) is:

E[Π] = Pr(trade at Q) · E[PT −Q | trade at Q]. (17)

The first term, Pr(trade at Q), represents the probability that a trader accepts the quote Q. This depends
on the distribution of trader types and their reservation values. The second term is the expected profit
conditional on a trade occurring at price Q.

For a risk-neutral LP in a competitive market, the optimal bid satisfies the zero-profit condition:

Q∗ = E[PT | sell]. (18)

However, for a monopolistic LP or one with risk aversion, we need to incorporate additional considera-
tions.

3.2 Risk-Adjusted Pricing

For a risk-averse LP, we can formulate the objective using a mean-variance framework or utility function.
Let U(·) denote the LP’s utility function. The LP maximizes:

max
Q

E[U(Π)] = max
Q

E[U(PT −Q)], (19)

subject to the constraint that trades occur (i.e., Q must be acceptable to some traders).

For a CARA (Constant Absolute Risk Aversion) utility function with risk aversion parameter γ:

U(x) = −e−γx, (20)

the certainty equivalent of the profit is approximately:

CE = E[PT −Q]− γ

2
Var(PT −Q) = E[PT ]−Q− γ

2
σ2, (21)

where σ2 = Var(PT ).

12



Setting the certainty equivalent to zero (for breakeven) or to some target profit π0 gives:

Q = E[PT ]−
γ

2
σ2 − π0. (22)

This shows how risk aversion leads to a discount beyond the expected value.

3.3 Incorporating Information Asymmetry

When we account for the presence of informed traders, the LP must condition on the event that a trade
occurs. Using Bayes’ rule, the optimal quote becomes:

Q∗ = E[PT | sell]− margin, (23)

where the margin can be decomposed as:

margin = rfµ∆T +
γ

2
σ2∆T + monopoly markup. (24)

The first two terms represent time value and risk premium, while the monopoly markup reflects the LP’s
market power.

3.4 Dynamic Belief Updating

After observing a trade (or no trade), the LP should update its beliefs about PT using Bayesian inference.
Let µt denote the LP’s posterior mean at time t. Upon observing a sell order at time t, the updated
belief is:

µt+1 = E[PT | sell at t,Ft], (25)

where Ft is the information set at time t.

For the binary model with V ∈ {VH , VL}, the posterior probability of the high state after observing a
sell is:

pt+1 = Pr(V = VH | sell) =
(1− α)ηpt

(1− α)ηpt + [α+ (1− α)η](1− pt)
. (26)

This posterior is lower than the prior pt, reflecting the adverse selection effect. The updated quote should
then be based on µt+1 = pt+1VH + (1− pt+1)VL.

4 Inventory Management and Risk Control

While setting the right price is crucial, the LP must also manage its inventory of HLP tokens and overall
exposure over time. Unlike a traditional stock market maker who can hold inventory indefinitely (subject
to risk limits) or hedge continuously, our LP’s inventory is tied to pending redemptions that will pay out
at future times.
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4.1 Inventory Risk

The LP’s capital at risk at any given moment is proportional to its inventory q and the current NAV P0.
Essentially, if the LP holds q HLP tokens, a sudden drop in HLP value (e.g., due to trader wins or price
crashes) would cause a mark-to-market loss of q∆P (until redemption). The LP desires to keep this risk
limited (e.g., limit potential drawdown to approximately 1% of total pool).

There is a capacity constraint: the LP cannot buy unlimited tokens; it has finite capital and risk tolerance.
If too many users redeem in a short time (say a run on liquidity), the LP might have to drastically lower
Q or temporarily halt trading to avoid overexposure. We may formalize a Value-at-Risk (VaR) limit:
e.g., choose qmax such that even if the HLP vault suffers a worst-case loss (say X% drop) on the entire
inventory, the loss is less than 1% of LP capital. For instance, if the LP has $100M capital and wants
< 1% loss = $1M in worst case, and worst-case drop in HLP value in 4 days is say 20% (observing events
like the $20M incident which was approximately loss of 20% of a $100M vault), then

qmax ≈ 1M

0.2P0
=

5M

P0
. (27)

If P0 = 1 (i.e., normalized per token value $1), qmax = 5M tokens. This is just an example of setting a
cap.

4.2 Inventory-Adjusted Quoting

Inventory also influences future quoting: A fundamental principle in market making is that if you have a
long inventory, you should lower your bid (and ask) to reduce further accumulation and even try to sell
some inventory off. Conversely, if you have too little inventory (or short, though here short unlikely), you
might raise quotes to attract more trades. In our one-sided context, if q is large (we hold many tokens),
the LP may become more cautious: lower Q substantially to deter all but the most motivated sellers,
or pause quoting, until some inventory clears (either through reaching settlement or finding someone to
offload to).

We can formalize a linear inventory penalty in the quote. For example, building on the Avellaneda-Stoikov
style model, one might set:

Q(q) = Q∗
0 − kq, (28)

where Q∗
0 is the base quote (as derived in previous section for zero inventory) and k is a positive constant

representing how much we adjust price per token of inventory to account for risk. This essentially adds a
buffer so that as inventory increases, the price offered decreases, reducing further inflow and encouraging
perhaps some opportunistic buyers if any (if the LP were to offer an ask, it might come into play). The
parameter k could be chosen based on risk tolerance and volatility (in Avellaneda-Stoikov, k = γσ2

2 for
some risk aversion γ).

Because the LP cannot directly sell HLP tokens except waiting for redemption, inventory management
mainly means controlling the flow of new purchases. However, if there is a possibility to arrange secondary
transfers (e.g., perhaps another party wants to enter HLP instantly, the LP could match them by selling
some tokens at an “ask” price), the LP could facilitate that. In absence of such external demand, the LP
could also deposit additional capital into the HLP vault as needed to offset (though depositing doesn’t
reduce inventory; it just increases exposure). So likely the main tool is quoting and possibly hedging.
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4.3 Stochastic Control Formulation

We can set up the LP’s problem as a stochastic control or dynamic programming problem. The state
variables are: current time t, inventory q, and perhaps current belief about PT (mean µ). The control
is the quote price Q. The objective is to maximize expected terminal profit E[PNL] minus a penalty for
risk. We also consider that at t = T , all inventory is liquidated at PT . One could write the Hamilton-
Jacobi-Bellman (HJB) equation for the LP’s value function J(t, q, µ), but given the complexity of adverse
selection, we incorporate a simpler heuristic approach here:

• We assume the LP sets Q(t) at each small interval ∆t, and either a trade happens or not. The inventory
update dq equals the trade size if trade happens.

• The expected infinitesimal profit dΠ in that interval is Pr(sell at t) · (E[PT |sell at t]−Q(t)) · (size). If
no trade, no immediate PNL change (though future PT expectation might update).

• The LP’s expected total profit is the sum/integral of these contributions over time, plus the final
mark-to-market of any remaining inventory. If quoting continuously, the LP may receive multiple
orders.

• The risk of a large loss comes if PT turns out much lower than expected for a large inventory. This is
a downside scenario we constrain.

To protect against adverse selection and inventory risk, the LP might incorporate a no-trade region or
reservation price. If the LP’s belief µ becomes very low (signaling likely losses) or inventory q is very high,
the LP could even stop offering quotes (effectively Q goes to a very low level that no rational uninformed
trader would accept, so only an extremely informed desperate trader would trade which in turn the
LP may actually not want either). Such “no-trade intervals” have been identified in optimal market
making with combining inventory and info asymmetry. In simpler terms: if uncertainty is too high, the
LP widens the spread so much that trading ceases until new information arrives. In our scenario, the
LP might at times say “no liquidity available right now” if conditions are too adverse (this ensures not
providing liquidity to strongly informed traders at a bad price).

4.4 Minimal Drawdown Target

We now incorporate the constraint that the LP’s drawdown (loss) should be very small (on the order of
1% of capital or less). We can interpret this in a few ways:

• As a chance constraint: Pr(PNL < −1% capital) < ϵ, with ϵ very small (say 1% or 0.1%). The LP
wants a high probability of not losing more than 1%.

• As a robust worst-case: for any reasonably possible scenario (excluding extreme tail beyond some
confidence), the loss is < 1%.

To enforce this, the LP must be conservative in both pricing and sizing. This translates to:

• Limiting inventory q as discussed: ensure q is such that even if PT is at its lower 1% percentile, the
loss q(Q− PT ) is < 1% capital.

• Dynamic hedging if possible: If any instruments exist to offset risk, use them (discussed more in
hedging section).

• Real-time monitoring: If an event (like a sudden market move) suggests the vault will drop significantly,
the LP might adjust instantly (e.g., reduce Q or pause) to avoid accumulating more at old prices.

15



• Possibly diversification: if the LP runs this service for multiple independent vaults or multiple times,
diversify to not put all capital in one cycle.

In formal terms, one might add a penalty term in the objective for variance of PNL or a constraint on
CVaR (Conditional Value at Risk). For example, maximize

E[PNL]− λVar(PNL) (29)

for some large λ that forces low variance. Or solve for Q and acceptance criteria such that

E[PNL]− z
√

Var(PNL) ≥ 0 (30)

for z corresponding to a 2-3 standard deviation safety (if assuming normal approximations). The LP can
calibrate λ or z to reflect the 1% drawdown tolerance.

4.5 Continuous Belief Updates

Each trade (or lack thereof) gives the LP information about PT . Using Bayesian updating, the LP should
adjust µ = E[PT ] whenever a redemption happens. Specifically, if someone redeems, it’s a signal that
perhaps PT could be on the lower side (with weight depending on how likely it is they were informed).
The LP could update something like:

µnew = µprior − w(Q− µprior), (31)

where w is related to the probability the trader was informed. In an approximate linear update (assuming
normal priors etc.), one can derive formulas for how much to shift the mean. For example, if we treat
the observation “a sale happened” as evidence, the updated mean might be λµold + (1 − λ)Q for some
λ. Intuitively, if a sale happens, perhaps tilt the expected value a bit towards the sale price or below
it. If no trades happen for a while, maybe one can raise the quote gradually (since no news could imply
either nothing bad or simply no liquidity needs this part is subtle). For simplicity, the LP could maintain
a running estimate of α (informed probability) and adjust µ accordingly. In practice, if the LP sees a
flood of redemption requests all at once, that is a huge red flag of adverse selection likely many know
something (e.g., a big position in the vault went south). In that case, µ should be slashed dramatically
and Q dropped or halted to avoid being stuck with too high-priced inventory. Our model would capture
that by sequentially updating µ after each trade, resulting in rapidly falling quotes.

4.6 Mathematical Example Inventory Adjusted Quote

To illustrate the combined effect, consider a simple linear model:

Q(t) = µ(t)− δinfo(t)− cq(t), (32)

with µ(t) the current belief of fair value, δinfo(t) the adverse-selection markup needed (which could
depend on updated α or variance at time t), and cq(t) the inventory penalty term (with c > 0). If
q = 0, this reduces to earlier Q∗ formula. If q is positive, the price is set lower to slow further purchases.
One can choose c such that if q hits a certain fraction of qmax, the quote becomes very low (essentially
discouraging more trades). For example, if qmax = 1000 tokens is the limit, one might choose c such that
c · 1000 = some large discount like 5%. So each 100 tokens adds 0.5% extra discount.

This formula is heuristic, but it captures the spirit. In well-known market making models, the optimal
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bid is the base value minus an inventory term proportional to inventory. Those models assume continuous
market price movements and the inventory term addresses price risk. Here, price risk is embodied in µ

changing and in the possibility of lower PT ; nonetheless, we include it analogously.

4.7 No Short Hedge Available Implications

The user’s note that “nowhere offers a short HLP option so we can’t hedge it, only hedging is through
the pool” implies the LP cannot offload the risk via derivatives or short positions directly on HLP. This
is a critical constraint. If shorting HLP were possible, the LP could immediately hedge by short-selling
the same amount of HLP tokens in another market (locking in the profit Q vs future PT difference).
In absence of that, the LP itself essentially is the market it must carry the position until settlement.
This increases the importance of correct pricing and inventory limits. It also means the LP’s only way
to mitigate risk is by influencing the order flow (through pricing) and by possibly hedging indirectly in
related markets:

• Hedge underlying components: The HLP vault’s value is tied to underlying assets (e.g., if HLP
holds a basket of crypto assets or stablecoins, plus PnL). If the vault has a known composition or
delta exposure, the LP might hedge those. For instance, if HLP effectively is long certain coins or
short certain due to open interest, the LP could take opposite positions in the open market to offset
some risk. However, this is complicated: HLP’s exposure to, say, BTC or ETH can change as traders
enter/exit positions. If one knew HLP is currently net short ETH (because traders are long ETH perps
in the exchange), then if ETH price surges, HLP loses. The LP could hedge by buying some ETH or
going long an ETH future to offset that scenario. Similarly, if HLP has a lot of long exposure to an
asset (through traders’ shorts), then a price drop hurts HLP, which LP could hedge by shorting that
asset. Essentially, the LP could try to replicate the trading book of the HLP vault externally. This
requires access to real-time data on the vault’s positions. If the system (divine OS mentioned) provides
that, an in-house secondary arbitrage model could be to mirror trades: for example, if a whale just
sold a large position to HLP (implying HLP is now long that risk), the LP might hedge by shorting
that asset externally.

• Hedge systematic risk: Even without replicating positions, the LP knows that if overall crypto
market crashes, HLP likely loses value (as traders might be net long, or even if not, some losses
happen). So the LP could maintain a hedge like a put option or short futures on a crypto index to
cover tail risk. This could protect against broad market moves.

• Insurance or stop-loss: The LP could pre-arrange a form of insurance or stop-loss trade: for
example, if HLP value drops beyond a threshold, the LP might have a contract to sell HLP tokens or
have someone inject funds. But these are complex to implement in decentralized setting.

We incorporate hedging in our model as an option but not a given. Formally, let H be any hedge position
the LP takes (with cost and payoff that correlates with PT ). The LP’s total PNL from a trade plus hedge
would be (PT − Q) +Hpayoff −Hcost. The LP can choose H to minimize Var(PT − Q +H) ideally. A
perfect hedge sets Hpayoff ≈ −(PT −E[PT ]) so that PNL becomes roughly E[PT ]−Q. But without direct
HLP hedge, H will be imperfect.

We formalize hedging decision as part of strategy: at time of each trade, or periodically, the LP chooses
a hedge portfolio to maximize expected utility. However, to keep this paper focused, we assume limited
hedging ability. Instead, the LP leans on self-hedging through the pool, meaning it dynamically adjusts
quotes (and thus who trades with it) to manage exposures essentially the pool’s behavior is the hedge.
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4.8 Example Scenario

Suppose at time 0 the LP has no inventory and quotes Q0. A few small uninformed trades happen,
LP accumulates a bit of inventory (say q = 100 tokens). Suddenly, news breaks of a possible exploit or
major win for a trader that could cost the vault money (like the whale offloading $4M loss scenario).
Informed users rush to redeem. The LP, if acting ideally, observes an increase in redemption requests
(above normal flow) this triggers a belief update that PT might end up much lower. The LP immediately
lowers its quote Q significantly, perhaps by a few percent, to protect itself. Some users might still accept
(if they think even worse coming), but at least the LP is now buying at a much lower price. The LP
might also stop after a certain size or time. As a result, the LP might end up having bought, say, another
q = 500 tokens but at large discount. The vault indeed loses money; when the dust settles, PT is down
say 5%. The LP’s earlier inventory of 100 loses 5% (that portion is a loss). The later inventory of 500
was bought at, say, 4% discount to the original price, so maybe that portion has a small profit (bought
cheap enough). Net effect, LP might roughly break even or have a small loss, instead of a huge loss if
it had kept quoting high. The LP’s strategy thus must be responsive to new information to minimize
adverse selection impact.

In conclusion of this section, the formalism indicates that inventory management and risk control are
integral to the quoting strategy. We have set up the necessary components: a pricing policy that depends
on current beliefs and inventory, and a risk limit on inventory. Next, we discuss further the hedging
possibilities and how an “in-house arbitrage model” could complement the strategy.

5 Hedging and Secondary Strategies

As mentioned, the LP’s primary hedging tool is its own pricing/inventory control. However, to maximize
profit and minimize risk, the LP should consider any external opportunities to hedge or arbitrage. We
formalize a few ideas:

5.1 Hedging via Related Markets

Let Φ denote a vector of market risk factors that influence HLP’s value (e.g., BTC/ETH spot, volatility
indices, aggregate open interest or funding rates). Assume the LP can trade a subset of these (BTC/ETH
futures, options, etc.). Model the terminal value as PT ≈ g(ΦT ) + εT , where εT captures idiosyncratic
PnL not explained by market moves. For small changes, linearize as dP ≈ β⊤dΦ with β = ∇Φg(Φ). A
delta hedge chooses a position H delivering payoff −β⊤∆Φ to offset factor exposure. For example, if the
HLP is effectively short X notional of BTC (so when BTC rises the vault loses X), the LP goes long X

notional of BTC futures to neutralize that component. Residual risk arises from εT (e.g., trader-specific
outcomes, model error, or non-linear/operational events such as oracle issues) that are not spanned by
the traded factors.

We incorporate hedging by adding terms in the LP’s strategy: at each time step, the LP chooses a
hedge position h(t) in available instruments to minimize variance. The effect is to reduce σ in our earlier
equations (thus allowing a tighter Q maybe). A full formal treatment would set up a joint process for
PT and hedge asset prices and solve for optimal hedge ratio (like in mean-variance optimization). In this
paper, we limit ourselves to stating that if such hedges are available, the LP should utilize them to the
extent they are effective and cost-efficient. Any hedge cost (e.g., bid-ask spreads or funding for futures)
should be factored into the PNL. If hedging is expensive, the LP might hedge only partially or during
high-risk periods.
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5.2 Running a Secondary Arbitrage Model In-House

The user’s query suggests openness to running an arbitrage strategy internally if it helps. One possible
arbitrage: if the LP notices mispricing between the instant liquidity price and some other market. For
instance, suppose another platform or OTC market is willing to buy HLP tokens at a higher price than our
Q. The LP could buy from users at Q and immediately flip to the other buyer for a profit. Currently,
it’s stated no other venue offers a short HLP option (likely meaning no active secondary market for
HLP), but perhaps an arbitrage could be constructed via primary vault deposit. For example, if the
LP’s quoted discount is too high, an opportunistic arbitrageur might deposit fresh USDC into HLP, wait
4 days, then redeem at full value, effectively capturing the difference. This arbitrage is slow (it takes 4
days), but it sets a theoretical cap on how large the discount can be: if LP offers, say, a 5% discount for
instant liquidity, a well-capitalized arbitrageur could take the other side by buying those HLP tokens (or
equivalently depositing into HLP) to gain 5% in 4 days, which is an enormous annualized return. If such
opportunities exist, competition or the LP itself could exploit them. The LP is effectively doing that by
running this service, but if LP misprices, others could step in.

So, to formalize: the LP must ensure the pricing is market-efficient in the sense that it doesn’t leave
obvious arbitrage. The LP should monitor the relationship: Instant Price Q vs. primary market re-
demption value vs. any other secondary price. If Q is too low, either no one will sell (they’d just wait
4 days or others would buy and wait), or someone might buy at Q and redeem in 4 days themselves (if
allowed to transfer HLP token ownership). If Q is too high, the LP loses money to informed traders or
essentially gives free lunch to sellers. So Q tends toward an equilibrium reflecting fair value minus cost
of liquidity and risk.

An in-house secondary arbitrage could also mean: use any slight mispricing in underlying markets to
enhance PNL. For example, if a user redeems and the LP now holds an HLP token, the LP could
simultaneously try to replicate a short position in the HLP by shorting a basket of underlying assets to
be delta-neutral. If done perfectly, then regardless of PT , the LP’s combined position (HLP token long
+ underlying shorts) yields a fixed payoff (the difference ideally equal to fees earned). This is essentially
hedging as described, but if there’s any extra edge (like funding rate differences, etc.), the LP might earn
more.

Another strategy: if the LP has superior predictive models for HLP’s performance (say from on-chain
data or trader behavior analytics), it might time its quoting aggressively when it expects the vault to
gain value (thus willing to buy more, since likely profit) and quote more conservatively when expecting
trouble. This informational edge is part of maximizing PNL, though not exactly arbitrage, more like
informed market making.

To stay in formal terms: we assume the LP continuously optimizes not just the quote but also any
auxiliary strategies that can enhance profit. Let Θ represent such strategies (hedges, arbitrage trades).
The LP’s total PNL can be viewed as:

PNLtotal = PNLquotes(Q) + PNLhedges(H) + PNLarbitrage(Θ). (33)

The LP chooses Q, H, Θ to maximize E[PNLtotal] subject to risk constraints. PNLarbitrage might be zero
or positive if opportunities exist. PNLhedges might be negative expectation if hedges cost money (like
option premiums), but they reduce variance.

We likely set Θ aside as optional; if a clear arbitrage existed, others would likely take it too, making it
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fleeting. The LP as insider to HLP flows might identify patterns though e.g., if a lot of people redeeming
might mean something, maybe short the HLP’s underlying assets as mentioned (which is hedging). So
Θ and H overlap.

5.3 Conclusion of Hedging Section

The formal insight is that absent a direct short HLP market, the LP’s optimal strategy is largely self-
contained: manage quotes and inventory. However, to the extent external hedges exist, incorporate
them. The LP effectively must act as a risk manager for the vault’s liquidity: quoting in a way that
any informed flow is absorbed at a price that protects the LP (like an insurance premium). If additional
strategies “make sense to maximize PNL,” as the user suggests, the LP should deploy them (the model
allows adding any strategy with positive expected return that doesn’t violate risk limits essentially the
LP can invest excess capital elsewhere as long as it doesn’t interfere with covering redemptions).

6 Implementation Considerations and Transaction Cost Analysis

Implementing this model in practice requires careful consideration of operational details and performance
measurement. In this section, we outline how the LP would use the model and monitor its success,
including conducting Transaction Cost Analysis (TCA) and other analyses to refine the strategy.

6.1 Smart Contract and Infrastructure

The LP’s quoting and trading likely involves a smart contract or off-chain service integrated with the
HLP vault. When a user requests instant redemption, the system should:

1. Query the LP’s current quote Q (which may be computed in real-time by an off-chain algorithm
referencing on-chain data, since on-chain might be too slow for dynamic pricing).

2. Execute the trade: user transfers HLP token to LP’s address, LP transfers payment (in stablecoin,
etc.) to the user at price Q×quantity. This can be routed via an MPC wallet as mentioned (ensuring
secure custody of funds).

3. The contract then initiates a withdrawal from the primary vault for that quantity of HLP tokens.
Since primary redemption is T + 4.5, the contract will mark that withdrawal to complete at t + 4.5

days.

4. When settlement occurs, the contract receives the assets and returns them to the LP’s liquidity pool,
replenishing capital.

This pipeline must handle partial withdrawals, track the timing of each batch, and possibly manage
multiple overlapping cycles. The Devine OS mentioned likely coordinates these flows.

6.2 Parameter Estimation

Key parameters like α (informed trader probability), distribution of PT , volatility σ, etc., should be
estimated from data:

• The LP should analyze historical vault performance and redemption patterns. For example, if historical
data shows that 30% of volume spiked before large vault losses, one might estimate α or at least
condition probability of informed trading.
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• The volatility of vault value over 4.5 days can be estimated or modeled (perhaps via a Monte Carlo
simulation of market moves and trader behaviors).

• If available, analyze past cases of immediate vs delayed redemption (maybe analogues in GMX’s GLP
markets or other funds with lockups) to gauge typical discounts.

6.3 Calibration

Initially, the LP might start with a conservative quote (e.g., a fixed 0.5% discount plus small time value).
Over time, by observing results, the LP can calibrate:

• If too few users are using the service (maybe quote is too low), the LP might narrow the discount.

• If the LP observes that every time someone redeems, the vault value tends to drop by, say, 0.3% on
average relative to expectation, then that informs δinfo ∼ 0.3%.

• The LP can compute realized PNL per trade: For each redemption trade, when the actual payout
arrives, calculate profit = (payout− price_paid)/price_paid. Over many trades, find the distribution
of this profit.

• If the LP is pricing perfectly on average, the mean profit should be positive (to cover costs) but not
too high (or else maybe leaving volume on table).

• If mean profit is negative, that’s bad means adverse selection or underpricing risk.

• If a significant fraction of trades are losses, perhaps α was higher or δinfo underestimated.

This is where TCA comes in: Typically, TCA for market making looks at metrics like realized spread
(profit after some time) and impact of trades. In our context, we can do a similar analysis:

Realized Spread: For each trade (instant redemption), define mid-price as perhaps the expected value
(or maybe just P0 if no better reference). The LP’s discount is P0−Q. When the vault pays out, compare
the LP’s revenue vs what it would have been if paid P0. Essentially, realized profit = PT −Q. We want
to track average PT −Q across trades.

A positive average means LP is profitable. But we also examine variance and downside cases. The LP
should track worst-case outcomes (e.g., maximum Q− PT encountered, which is a loss scenario).

If certain patterns emerge (e.g., large trades tend to be informed and result in losses), the LP might
introduce size-dependent pricing (bigger sells get worse price).

If frequent small trades rarely result in loss, perhaps LP can tighten spreads for small trades to get more
volume.

6.4 Transaction Cost Analysis for Users vs LP

From the user perspective, the “transaction cost” of using the instant pool is the discount they pay. If
our LP is too expensive (big discount), users might only come when absolutely necessary (or not at all
if they can afford to wait). If too cheap, users with minor needs will gladly use it and LP may not be
compensated enough for risk. So TCA can also consider the users: e.g., measure how much value users
leave on table by selling early vs what they would have gotten waiting. Ideally, for liquidity provision to
be efficient, that cost should reflect fair compensation for time and risk.

The LP can measure the average discount given: say average Q/P0. If the LP notices that even unin-
formed users are paying a high cost (like consistently, Q is 0.98 of P0 and PT ended up 1.0, so users lost
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2%), maybe competition will eventually come or users will complain. If the LP is monopolist maybe
that’s fine for profit, but if it’s too high, fewer trades happen. So there is a trade-off.

To optimize, the LP could simulate different pricing policies and their expected volume × margin to
maximize PNL. This is like finding the optimal point on a curve of volume vs margin (akin to any
monopoly pricing problem). In practice, some experimentation or iterative adjustment might be needed.

6.5 Technological and Market Risks

The model assumes all goes smoothly, but implementation must consider:

• Settlement risk: The 4.5-day delay has risk that something fails (smart contract bug, the vault
freezes withdrawals, etc.). The LP should be aware of those. Perhaps factor a tiny probability of
non-payment (if any) into pricing (a credit risk spread).

• Regulatory/Platform risk: If the platform is at risk (like Hyperliquid’s centralization issues, regu-
latory crackdowns, etc.), that could drastically affect PT or even ability to redeem. The LP in extreme
cases might pause operations if such meta-risk is perceived (because if the whole platform fails, the
LP could lose 100% of inventory).

• Competition: If others start offering similar services, pricing might become more competitive, push-
ing Q closer to fair value. The LP’s model can adapt by including an outside option: if competitor
offers discount dcomp, LP must offer slightly better or equal effective discount to attract trades (unless
LP has other advantages). So Q could also depend on market competition, which we assume minimal
here.

6.6 Monitoring Adverse Selection

The LP should continuously monitor order flow for signs of adverse selection:

• If a cluster of redemptions occur rapidly, that likely indicates an informed event. The LP’s algorithm
should flag this and possibly automatically widen quotes or halt until more info is known.

• The LP could integrate alerts from the vault’s health: e.g., if a huge trade happens on the exchange
that could hurt HLP (like the $4M loss event where a whale opened a huge position), the LP system
should anticipate that HLP might drop and adjust Q proactively.

• Machine learning models could be trained on on-chain data to predict vault drawdowns; the LP can
feed those into the pricing (this goes beyond our formal model but is a practical augmentation).

6.7 Empirical Backtesting

Before deployment, one would ideally backtest the strategy. Since exact data may not exist for HLP
historically (if new), one can use analogies:

• Simulate a time series of HLP NAV over 5-day periods, with random jumps representing trader
wins/losses, and random arrival of informed vs uninformed sellers.

• Apply the strategy (pricing and inventory rules) to the simulation and measure resulting PNL distri-
bution.

• Adjust parameters to meet the 1% drawdown target (ensuring in, say, 99% of simulations LP loss
< 1%).

• Ensure profitability: The simulation should show positive average PNL.
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Backtesting and TCA results can then feed back to refine the model’s parameters (α, δinfo, k for inventory,
etc.).

6.8 Transparency vs Gaming

One consideration is whether the LP reveals its pricing formula or keeps it black-box. Too much trans-
parency might allow informed traders to game it (though essentially they just trade when beneficial
anyway). But maybe the LP should commit to some algorithm to ensure users trust the fairness. Since
this is an academic paper style discussion, we won’t delve into strategic gaming by traders beyond adverse
selection already considered.

Summary. In summary, implementing the model involves a robust system that dynamically updates
quotes, executes trades atomically with transfers, and manages the queue of pending redemptions. TCA
and ongoing analysis are crucial to ensure the strategy works as intended: the LP should consistently
earn a small positive spread on uninformed order flow to compensate for the occasional losses to informed
order flow and for the capital cost, which is the classic outcome for a market maker under asymmetric
information. If the LP finds its PNL not matching theory, it must recalibrate (e.g., increase δinfo if losing
to informed traders, or decrease it if too few trades).

7 Conclusion

We have presented a comprehensive formal model for operating as a market maker providing instant liq-
uidity for HLP vault redemptions. By framing the problem in terms of optimal pricing under uncertainty
and adverse selection, we derived how the LP should set a discounted redemption price that balances
profit and risk. The key insights are:

1. Optimal pricing under information asymmetry: The LP’s optimal quote is essentially the
expected future value of the HLP token conditional on a sell order, minus a margin for profit. This
creates a rational discount compared to waiting 4.5 days, compensating the LP for time value, risk,
and information asymmetry. In equilibrium, this discount (or bid-ask spread analog) arises from a
combination of adverse selection risk and monopolistic pricing of liquidity. If information asymmetry
is high, the discount (spread) must be larger to avoid losses. If asymmetry is low, the LP can quote
closer to fair value. This ensures incentive compatibility: informed traders trade only when it’s optimal
(which the LP prices in), and uninformed traders get liquidity at a fair cost for immediate access.

2. Dynamic inventory and belief management: The LP must actively manage inventory and update
beliefs. After each trade, especially if sudden or large, the LP revises its outlook with the trade signal.
Inventory accumulated is essentially a bet on the HLP’s future value; to keep risk bounded, the LP may
reduce subsequent quotes or pause to keep inventory within limits. We formalized how an inventory
penalty can be added to the pricing rule to achieve near-market-neutrality aside from the necessary
long HLP position the LP temporarily holds. This helps minimize the variance of outcomes and avoid
large drawdowns.

3. Stringent risk control: Risk control is paramount: by imposing a drawdown limit (like 1% of
capital), the LP ensures survival and consistency. We showed how this can translate into position
limits and conservative pricing. In extreme scenarios (e.g., suspected large vault loss events), the
model would dictate widening the spread or even refusing trades a phenomenon akin to a “no-trade
region” when adverse selection becomes too severe. This protects the LP from being picked off by
informed traders in those moments.
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4. Hedging and secondary strategies: Although direct hedging of HLP is not possible, the LP can
hedge indirectly by trading underlying assets or related derivatives to the extent feasible. While we did
not provide a full hedging solution, we outlined approaches to offset market risk (like shorting/longing
correlated assets) and noted that any such hedges should be utilized if available. These can reduce
the effective risk of holding HLP inventory, allowing the LP to quote more competitively. Running
secondary arbitrage or predictive strategies in-house can further boost profits essentially, the LP should
use all information at its disposal (such as detecting when the vault is under/overvalued relative to
market) to position itself advantageously.

5. Continuous refinement through TCA: We detailed how one would implement this strategy and
continuously refine it. The LP should engage in Transaction Cost Analysis, monitoring metrics like
realized profit per trade and adverse selection loss, to ensure the model’s assumptions hold. If the LP
consistently loses on certain trades (indicating informed trading), it must adjust the pricing formula
(increase the discount) until those losses are covered by gains elsewhere. The LP also keeps an eye
on user experience: providing just enough liquidity at a tolerable cost to users, without giving up
excessive profit. Over time, the parameters (α, risk premium, etc.) can be tuned so that the LP’s
service runs optimally providing a useful function (immediate liquidity) to the market while operating
at essentially zero or positive expected loss to informed traders (meaning the informed are not “free-
riding” beyond what the LP has priced in).

6. Connection to theoretical foundations: Our formal model connects to known theoretical re-
sults in market making and mechanism design. By treating the LP as a profit-maximizing monop-
olist liquidity provider, we leveraged the idea of setting prices based on virtual values and ensuring
incentive-compatibility. The resulting strategy mirrors an optimal auction for liquidity, where the LP
“auctions” immediate liquidity to those who value it most (those willing to accept a discount) and
protects itself via the pricing rule. This is a novel application of such theory to a DeFi context of
vault redemptions, and it opens up further research directions: for instance, one could extend the
model to multiple competing liquidity providers, or to a continuous double-auction for HLP tokens.
Additionally, integrating this model on-chain (perhaps via an automated market maker smart contract
that adjusts dynamically using these principles) could be an interesting future development.

In essence, the LP should behave like an optimal market maker/AMM for this delayed redemption asset
always updating its beliefs with trade information, always balancing supply and demand for immediacy,
and charging just enough to cover risks. By formalizing the logic in this paper, we have provided a
blueprint that can be implemented and tested in a real environment. If followed, the LP can provide
an efficient quoting service for instant redemptions, contributing to market efficiency (by pricing the
time-value of liquidity) and maximizing its own profit with minimal risk.
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Addendum (Appended Content Only; Original Text Above Un-

changed)

Security & Production Invariants (Non-Exhaustive)

1. CEI discipline: Checks-Effects-Interactions; reentrancy guards on all external entry points.

2. NAV freshness: Quotes and confirmations require a snapshot timestamp within tmax; otherwise
revert or auto-halt.

3. Replay protection: Per-batch key single-use; global tx-hash uniqueness; per-user one-time batch-
key mapping.

4. Drift bounds: Max deviation between quote-time inputs and confirm-time state (NAV, supply,
assets); exceed ⇒ revert.

5. Settlement lock: Enforce batch expiry and minimum inter-batch spacing; stale batches cannot
confirm.

6. Liquidity checks: Verify vault/exchange balances before per-user confirms; batch USDC received
≥ sum of obligations.

7. Idempotency: Confirm endpoints idempotent across retries; Merkle claims one-time per leaf.

8. Access control: Role-gated admin/oracle functions; emergency stop with timelocked resume.

9. Numeric safety: Fixed-point bounds; overflow/underflow checks; rounding floors bias to solvency.

10. Event auditability: Emit events on quote accept, batch confirm, per-user confirm, and parameter
changes.

Stress/Halt Policy

• Oracle staleness or venue incident: Disable quotes; advance ratio a → 0; settlement/claims
remain enabled.

• Flow spike/clustering: Auto-increase δinfo, slope k, and temporarily reduce qmax.

• Backstop coverage: Non-recourse capacity scales to insured backstop; auto-throttle to maintain
coverage.

Parameter Defaults (Illustrative)

Parameter Symbol Guideline

Horizon fraction ∆T 4.5/365 years
Risk penalty γ Tune to hit τ=1% drawdown at tail level ε=1%

Inventory slope k Choose so Q(qmax) widens 50–100 bps vs base
Info discount δinfo Empirical conditional shortfall after sells

(size/cluster aware)
Advance ratio cap a 1− (f + cf + co + VaRα)

Batch expiry – e.g., 24h; re-quote after expiry
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APY Uplift Calibration (Informal)

Let C = 365/4.5 cycles/year, utilization U ∈ [0, 1], deployment ratio to vault L, and per-cycle net margin
(swept) g. Then

Rvault ≈ L
[
(1 + g)UC − 1

]
, g⋆ ≈

(
1 +

R⋆
vault

L

)1/(UC)

− 1.

Discount wedge D ≈ f∆+ g⋆ + risk buffer; raise D by ∆f if funding f rises to keep g constant.

Data, Backtesting, and Validation

DGP. Simulate (Pt) with jump-diffusion (incident risk); simulate sell-arrival Cox process with intensity
increasing under adverse regimes; label a fraction α as informed.
Calibration. Hit target drawdown τ and profitability via tuning k, δinfo, qmax; widen on clusters; decay
with half-life after normalization.
Monitoring. Track realized PT−Q, loss tails, hit-ratio by size/time, and halt efficacy.

A Binary Model Details (Supplement)

Let V ∈ {VH , VL}, prior p = Pr(VH). With informed probability α and uninformed sell-probability η,

Pr(sell) = α(1− p) + (1− α)η, E[V | sell] =
α(1− p)VL + (1− α)η(pVH + (1− p)VL)

α(1− p) + (1− α)η
.

Thus δinfo = (p− π)D with π = Pr(VH | sell) and D = VH − VL.

B Risk Buffer from Chance Constraint (Supplement)

If PNL across n fills has mean m and variance s2, enforce tail control via

m− zε s ≥ 0,

adding a per-fill discount ≈ zεσ/
√
n (normal proxy) or using CVaR sizing against incident tails.

C Example Policy Pseudocode (Informal)

Inputs: P0, mu, sigma, alpha, q, q_max, flags, rf, gamma, delta_info

BaseQuote = mu - rf*mu*DeltaT - 0.5*gamma*sigma^2*DeltaT - delta_info - markup

Q = clamp(BaseQuote - k*q, Q_min, Q_max)

if flags.oracle_stale or flags.venue_incident or q >= q_max:

Q = DISABLED

return Q
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