(8014) 1exealg-1ndiiD yum 4y L paisiing

DEVINE OS

Buffered TWAP with Circuit-Breaker (BTCB)

Quantitative Research And Asset Manager Integrations

Info= Devinegroup.xyz




Buffered TWAP with Circuit-Breaker (BTCB) in Devine OS

Devine Group

info@Devinegroup.xyz

July 22, 2025

Devine OS Whitepaper Series

Abstract

The Buffered TWAP with Circuit-Breaker (BTCB) method is a framework for managing continuous
capital flows in quantitative trading portfolios within the Devine OS blockchain-based vault system.
Designed for institutional asset managers, BTCB supports diverse strategies such as trend-following,
mean-reversion, and statistical arbitrage. It employs a pre-vault buffer, a 1-hour Time-Weighted Average
Price (TWAP) deployment strategy, and a volatility-based circuit-breaker to minimize market impact and
safeguard portfolio performance. Built for the Devine OS Arbitrum’s HyperliquidVaultRouter contract
and an off-chain Manager API, the system tracks buffer capital (Y;) and deployed capital (X¢), ensuring
simplicity, scalability, and compliance with the ERC-4626 standard. Shares are minted and redeemed
at live Net Asset Value (NAV), embedding profit and loss (P&L), idle-cash drag, and execution costs to
ensure fairness across investors. This paper details the system’s architecture, mathematical model, and
synchronization mechanisms, offering a clear and comprehensive guide to its operation.

1. Introduction

Managing continuous algorithmic deposit and withdrawal capital flows in quantitative trading portfolios
presents unique challenges, particularly in balancing market impact, execution costs, and investor fairness.
The Buffered TWAP with Circuit-Breaker (BTCB) method, integrated into the Devine OS ecosystem on
Arbitrum, addresses these challenges with a robust and flexible framework. By combining a pre-vault buffer,
a 1-hour Time-Weighted Average Price (TWAP) deployment strategy, and a volatility-based circuit-breaker,
BTCB minimizes market disruption while supporting diverse trading strategies, such as trend-following,

mean-reversion, or statistical arbitrage.

At the core of the system is the HyperliquidVaultRouter, an ERC-4626-compliant contract that interfaces
with Hyperliquid L1 to manage deposits, withdrawals, and settlements. The vault delegates trading logic
to an exchange wallet (vaultWallet) and relies on the Devine OS Manager API to track buffer capital
(Y;) and deployed capital (X;). This hybrid on-chain/off-chain architecture ensures simplicity, scalability,
and compliance with the ERC-4626 standard, which guarantees that old deposits do not affect new ones.
This paper outlines the BTCB model’s mathematical foundation, system design, and operational efficiency,


mailto:info@Devinegroup.xyz

providing a clear roadmap for institutional asset managers to integrate with the Devine OS ecosystem.

2. System Architecture

The BTCB framework operates within a cohesive architecture that balances on-chain reliability with off-chain
flexibility. Its key components are:

e Vault Contract: The HyperliquidVaultRouter, an ERC-4626-compliant contract on Arbitrum, tracks
total capital via latestExchangeBalance, manages share minting and burning, and processes de-
posits and withdrawals. It delegates trading to vaultWallet and requires admin confirmations for
on-chain/off-chain settlements.

e Manager API: An off-chain system that tracks Y; (buffer capital) and X; (deployed capital), executes
TWAP deployments, enforces circuit-breaker logic, and synchronizes with the vault for accurate NAV
accounting.

e Hyperliquid L1: Executes quantitative trading strategies, with capital transfers coordinated between
the exchanges vaultWallet, the HyperliquidVaultRouter Arbitrum contract and the Devine OS off-
chain systems.

2.1. Vault Design

The vault contract (HyperliquidVaultRouter) is the system’s on-chain backbone, handling:

o Deposits: Users deposit USDC, with a 0.2% entry fee sent to treasuryWallet and the remainder
routed to an exchange vaultWallet enabled by Devine OS backend. Deposits are recorded as Pend-
ingDeposit structs, confirmed via confirmDeposit, and shares are minted at the current NAV.

e Withdrawals: Users initiate withdrawals via initiateWithdrawal, creating a WithdrawalQuote with
NAV and share data. Withdrawals are processed in batches through confirmWithdrawalWithPnL,
applying a performance fee on positive P&L.

o« NAV and Liquidity: The vault tracks total capital as latestExchangeBalance (C; = X; + Y;),
updated algorithmically via updateVaultExchangeBalance.

By treating all capital as latestExchangeBalance, the vault avoids on-chain tracking of Y; and X;, simpli-
fying its logic while delegating complex operations to the Manager API.

2.2. Manager API Role

The Manager API enhances the system’s efficiency by handling:

e State Management: Tracks Y; and X; in for real-time updates.



e TWAP Deployment: Executes 1-hour TWAP deployments, transferring capital from Y; to X; via
vaultWallet, tailored to the quantitative trading strategy.

e Circuit-Breaker: Pauses deployments when portfolio volatility o; exceeds omax, retaining idle capital
in Y;.

e Synchronization: Optionally Updates latestExchangeBalance to reflect Y; + X;, ensuring NAV
accuracy.

This separation allows the vault to focus on on-chain accounting while the API manages dynamic trading
logic, ensuring scalability and adaptability for various quant strategies.

3. Deposit Inflow Process

Deposits flow into the system at a continuous rate A\, modeled as:
dDy = \dt. (1)

The buffer capital evolves according to:
d}/;g = th — Ut dt, (2)

where u; > 0 is the deployment rate into the quant portfolio, managed by the Manager API.

In practice, the vault processes deposits as follows:

o Users call deposit(assets, receiver), transferring USDC to the contract. A 0.2% fee is sent to
treasuryWallet, and the remainder moves to vaultWallet.

e Deposits are logged in userPendingDeposits with a nonce and timestamp, pending confirmation.

e The Devine OS backend sends to the Devine OS Manager API to update Y; and coordinates algorith-
mically to call confirmDeposit, minting shares at the current NAV.

This process ensures fairness by minting shares at the precise assetsPerShare (NAV), incorporating micro-
effects like idle-cash drag and execution costs, as required by ERC-4626.



100

80

USDC Amount ($)

201

60

40

 —— Cumulative Deposits
—— Cumulative Deployed

t
Gap (D¢ — fousds)

0 5 10 15 20 25
Time (hours)

Figure 1: Gap Between Inflows and TWAP Capital Deployment Outflows (0-24h). The black line shows
cumulative USDC deposits at a constant rate over 24 h. The blue line depicts the TWAP-deployed capital.
The grey shading represents the buffer Y;, the gap between inflows of idle capital and active capital outflows.

100}

80

USDC Amount ($)

20

60

40}

A) Finite Deposits (0-24h) + Continued TWAP (to 48h)

—— Total deposits
—— Cumulative deployed

! 1 !

0 10 20 30 40 50
Time (hours)

Figure 2: Finite Deposit Window with TWAP (0-48h). Deposits flow at a constant rate from Oh to 24h
(black), then cease. TWAP deployment (blue) continues to 48 h, draining the buffer (grey) by hour 48.



B) Ongoing Deposits + Steady-State TWAP

200 — Total deposits
175+ — Cumulative deployed

=

U

o
T

125¢
100

USDC Amount ($)
N w ~
(6] o ul

o

0 10 20 30 40 50
Time (hours)

Figure 3: Steady-State Deposits and TWAP (0-48h). Continuous deposits (black) maintain a constant rate.
TWAP outflows (blue) ramp up over 24 h, then match inflows, stabilizing the buffer (grey) as liquidity “in
flight.”

3.1. Efficiency of the Deposit Process

The deposit process is engineered for efficiency and fairness, with key features:

e Continuous Flow: Modeling deposits as a continuous rate X\ prevents market disruptions from sudden

inflows, mirroring gradual real-world investments.

e Pre-Vault Buffer: The buffer Y; absorbs deposits, smoothing volatility and preventing system over-
load, as shown in Figures 1-3.

e TWAP Deployment: The 1-hour TWAP deploys capital gradually, minimizing market impact.
Figures 1 and 2 illustrate how the buffer is drained efficiently.

¢ Idle-Cash Minimization: Rapid deployment reduces idle-cash drag, ensuring capital is utilized
effectively without compromising market stability.

e Scalability: The process adapts to varying inflow rates and market conditions, with the Manager API
adjusting deployments dynamically.

e Fairness: Shares minted at NAV ensure equitable treatment, embedding costs and drag proportionally,
per ERC-4626 standards.

This design achieves a balance of liquidity, efficiency, and fairness, making it ideal for continuous capital
management.



4. TWAP Deployment

The BTCB method employs a 1-hour TWAP to deploy capital from Y; to X;, minimizing market impact.
For a deposit of size A at time tg, the deployment rate is:

A

= — A
Uyt A te [to,to + L (3)

where A = 3600 seconds (1 hour). For overlapping deposits {(¢;, A;)}, the total rate is:

w= Y %. (4)

Bty <t<t;+A
The Manager API executes TWAP as follows:

e Confirmed deposits increment Y;.
o Capital is deployed in small batches over 1 hour via vaultWallet, aligned with the quant strategy.
e X, increases and Y; decreases accordingly.

e The API or Devine OS backend continuously updates latestExchangeBalance to reflect Y; + X;.

Execution costs are modeled as c(u;) = nu?, balanced against idle-cash drag (e.g., 0.0001% per hour at 1%
p.a. stablecoin yield). This gradual deployment reduces price impact, making it suitable for diverse trading
strategies.

5. Circuit-Breaker Mechanism

To protect the portfolio from volatile markets, the Manager API implements a circuit-breaker that pauses
TWAP deployments when short-term volatility exceeds a predefined threshold.

5.1. Volatility Calculation

Portfolio volatility is computed over a rolling window 7:

1/t 2 1t
o = 7/ (’I“s — T’) dS7 r= *\/\ Ts dS, (5)
T Ji—r T Jt—r

where r, is the instantaneous return on X;. In practice:

e Returns 74 are derived from high-frequency price ticks from Hyperliquid L1.

o A ring buffer updates 7 and o, in real time.



5.2. Circuit-Breaker Logic

The deployment indicator is:

]t _ 17 Ot S Omax;
07 Ot > Omax,

where oax is a strategy-specific volatility threshold. When o; > opax:

e I, =0, pausing new TWAP orders.

e Ongoing TWAP slices confirmed on-chain, but no new capital is deployed.

e Deposits accumulate in Y; until volatility subsides.

5.3. Adjusted Deployment Rate

The deployment rate becomes:

Y;
uy = Iy min (/\, At> .

If I; = 0, u; = 0, halting deployments.

Volatility vs. Deployment Adjustment (Circuit-Breaker)

Volatility / Deployment rate (USDC/hour)

- \/olatility o¢
= Deployment u;

Omax

0 10 20 30
Time (hours)

40 50

Figure 4: Volatility and Deployment Dynamics. The blue curve shows realized volatility oy, the black bars
shows deployments u; (USDC/hour), and the grey dashed line marks o,,.x. Shaded regions indicate pauses

when o; > omax-

5.4. Implementation

The Manager API:

e Streams returns from Hyperliquid L1 for real-time volatility updates.



o Computes oy every minute using efficient algorithms.
o Pauses TWAP when oy > oy, setting I, = 0.

e Logs activations and alerts portfolio managers.

This mechanism preserves capital during turbulent markets, reducing slippage and protecting NAV, as illus-
trated in Figure 4.

6. Withdrawal Processing

Withdrawals are processed in discrete batches based on the underlying quantitative strategy, updating de-
ployed capital:

th A thf - Z va (8)
wEWy,

Y;, unchanged. (9)
The vault handles withdrawals as follows:

e Users call initiateWithdrawal (shares), creating a WithdrawalQuote with NAV and share data.

e Devine OS communicates with manager via the API to confirm batch liquidity is available via con-
firmBatchUsdcReceived, updating batchUsdcRemaining.

e confirmWithdrawalWithPnL finalizes withdrawals, applying a 30% fee on positive P&L.
The Manager API:

e Tracks withdrawal requests, reducing X;.

e FEnsures batchUsdcRemaining reflects available USDC.

The FIFO batch process ensures withdrawals at quoted NAV confirmed via the manager.

7. Profit and Loss Dynamics

The portfolio’s performance is driven by:
dPt = TtXt dt — T]’LL? dt, (10)

where 7, is the return rate on X;, and nu? represents quadratic slippage costs. Total P&L over [0, 7] is:

T
Pr :/ (re Xy — nui) dt. (11)
0



7.1. P&L Visualization

P&L Dynamics Over Time

= Cumulative P&L Py
~10}

20}

Cumulative P&L (USD)

—a0

. . L . . .
0 10 20 30 40 50
Time (hours)

Figure 5: Cumulative P&L P;. The black curve shows net gains from X; minus execution costs, rising during
active deployment and stabilizing when deployment slows.

7.2. 1Idle-Cash Drag

Idle capital in Y; potenitally earning a low stablecoin yield depending on exchange venue, creating drag:

Idle-Cash Drag vs P&L Over Time

= Cumulative Idle-Cash Drag

25 —— Cumulative P&L

20

15

usb

10

0 10 20 30 40 50
Time (hours)

Figure 6: Idle-Cash Drag vs. P&L. The blue curve shows the opportunity cost of Y;, while the black curve
shows P&L from X;. The shaded gap highlights lost performance from uninvested capital.

7.3. Key Insights

e High u; drives P&L growth but increases slippage costs (nu?).
o Paused deployments flatten P;, with idle-cash drag accumulating.

e The TWAP window A balances P&L acceleration against costs.



8. Optimization Objective

The BTCB method maximizes expected P&L:

Ut

max E [/T(rtXt — nu?) dt] , (12)

0

subject to:

e Circuit-breaker: u; = 0 if 0y > opmax-

e Flow constraints: 0 < u; < .

This objective balances returns, execution costs, and risk protection, adaptable to any quant strategy.

9. Manager API Implementation

The Manager API ensures efficiency and simplicity through:

e State Management: Stores Y; and X; updating with deposits and deployments.

« TWAP Deployment: Queues deposits in Y;, deploying capital at us = A/A over 1 hour via vault-
Wallet.

e Circuit-Breaker: Monitors o; from Hyperliquid L1 data, pausing TWAP if oy > opax.
e Withdrawal Coordination: Tracks requests, reduces X;, and ensures liquidity via confirmBat-

chUsdcReceived.

The protocol ensures consistency by updating Y;, X;, and latestExchangeBalance after deposits, TWAP
batches, and withdrawals, with hourly reconciliations.

10. ERC-4626 Compliance

The BTCB method upholds the ERC-4626 invariant, ensuring old deposits do not affect new ones:

o NAV Calculation: totalAssets reflects latestExchangeBalance (X; + Y;), with shares minted at:

Deposit Amount - Total Shares;
X +Y; .

Shares = (13)

e Idle-Cash Drag: Y; is included in NAV, shared pro-rata across investors.
« Execution Costs: Costs nu are reflected in X; and NAV.

e Circuit-Breaker: Paused deployments increase Y;, fairly captured in NAV.

10



o Withdrawals: Processed at quoted NAV, isolating new deposits from P&L.

Risks like desynchronization, algorithmic reconciliations or delayed updates are mitigated through regular
latestExchangeBalance updates, Redis audit logs, and validation against Hyperliquid L1 data within the
Devine OS backend.

11. Design Evaluation

Managing Y; and X; in the Manager API offers:

e Simplicity: Keeps the vault focused on accounting, avoiding complex on-chain logic.

Scalability: Off-chain processing supports high-frequency deployments.

Flexibility: Allows dynamic adjustments to TWAP and volatility parameters.

e Fairness: Ensures accurate NAV via synchronization, upholding ERC-4626.

An on-chain alternative increases transparency but raises gas costs and complexity, making the API approach
optimal for quant trading strategies.

12. Conclusion

The BTCB method offers a sophisticated yet accessible solution for managing continuous capital flows
in quantitative trading portfolios. By integrating a pre-vault buffer, 1-hour TWAP deployment, and a
volatility-based circuit-breaker, it minimizes market impact and protects performance across strategies like
trend-following and statistical arbitrage. The HyperliquidVaultRouter and Manager API ensure simplic-
ity, scalability, and ERC-4626 compliance, with robust synchronization maintaining NAV fairness. This
framework balances returns, costs, and risk, delivering institutional-grade reliability within the Devine OS
ecosystem.

11



	Introduction
	System Architecture
	Vault Design
	Manager API Role

	Deposit Inflow Process
	Efficiency of the Deposit Process

	TWAP Deployment
	Circuit-Breaker Mechanism
	Volatility Calculation
	Circuit-Breaker Logic
	Adjusted Deployment Rate
	Implementation

	Withdrawal Processing
	Profit and Loss Dynamics
	P&L Visualization
	Idle-Cash Drag
	Key Insights

	Optimization Objective
	Manager API Implementation
	ERC-4626 Compliance
	Design Evaluation
	Conclusion

